

Senior Design Project
Musync

Low-Level Design Report

Ahmet Çandıroğlu, Anıl Erken, Berk Mandıracıoğlu, Halil İbrahim Azak

Supervisor: Assoc. Prof. Dr. M. Mustafa Özdal
Jury Members: Prof. Dr. Özcan Öztürk, Prof. Dr. Cevdet Aykanat

Low-Level Design Report Feb 18, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project II course CS492.

Table of Content
Table of Content 2

1. Introduction 3
1.1 Object design trade-offs 3

1.1.1 Usability vs. Functionality 3
1.1.2 Efficiency vs. Accuracy 4
1.1.3 Security vs. Usability 4
1.1.4 Reliability vs. Compatibility 4

1.2 Interface documentation guidelines 4
1.3 Engineering standards 5
1.4 Definitions, acronyms, and abbreviations 5

2. Packages 6
2.1 Server 6

2.1.1 Model 6
2.1.2 Controller 8

2.2 Client 10
2.2.1 View 10

3. Class Interfaces 12
3.1 Server 12

3.1.1 Model 12
3.1.2 Controller 19

3.2 Client 22
3.2.1 View 22

4. References 26

Musync 2

1. Introduction

Music is a common interest that many people enjoy and rest their souls. It may become a

cumbersome procedure to find music that many people enjoy. In our daily lives, we are

surrounded with music by means of our environment such as restaurants, cafes, bars, etc.

Therefore, it is even more important to create a suitable playlist to satisfy majority based on

their collective music taste. It is also necessary to recommend new places that people might

enjoy according to their music taste and even discover new songs.

The main purpose of this system is to let people choose what they listen according to their

music taste in public places such as cafes and bars. Musync aims to facilitate creation of

playlists that are dynamically modified by both analysing the music tastes of users and their

feedback on the current playlist. Musync is basically an automated digital jukebox which

collects data about people’s music tastes from its current users and initialises a playlist. The

playlist is dynamic and changes as people come on go so that everybody can listen what

they generally like. Moreover, users are able to add songs to the playlist and have a chance

to choose the next song by the power of bidding. Also, users are able to see nearby

locations along with their music preferences, so they can choose where they want to hang

out.

This report describes the low-level architecture and the design of the Musync. Report

comprises Object design trade-offs, Engineering standards, Packages and Class interfaces

sections. Finally, the report is concluded with the class diagrams and the detailed

explanations of software components.

1.1 Object design trade-offs

1.1.1 Usability vs. Functionality

In Musync, our first goal is usability. Firstly, we want our users to start using it without any

annoying, time consuming processes like downloading an app and registration. Then, we will

provide a clean and simple menu that user will know how to use it at first sight, and fast

navigation to make it easy to use. Therefore we will not implement too much functionality

that will lead to complex, slow menus and make the application difficult to quickly

understand. Even registration is not required, since we think that aim of our app is simple

Musync 3

and users don’t want to spend too much time for that. That’s why we want to keep it “as

simple as possible, but not simpler”.

1.1.2 Efficiency vs. Accuracy

One of our goals it to make a common playlist for each place which contains songs from

different users’ playlists. This procedure will be repeated for each place throughout the day

and can be very difficult to compute when there are many users. Also, the playlist will be

dynamic as it will be altered for each user. For these reasons, we aim to have an efficient

algorithm instead of a highly accurate one.

1.1.3 Security vs. Usability

While high level of usability is one of our goals, we needed to lose some usability to provide

more security. As in real life or any other field, being more secure may require sacrificing

some conveniences. An example of this is ending sessions of users after a time of inactivity.

We determined this duration to be not too long to prevent both an unintended person

accessing to a user’s account on a device after the actual user stopped using it and also an

ill intentional user continuing to affect the music flow of place long after leaving the place.

This will require users to reconnect to the place if they stayed inactive long enough for their

session to expire.

1.1.4 Reliability vs. Compatibility

Musync aims to provide a robust and reliable system where users can enjoy the music

experience without any system crashes. Moreover, if the system is allowed to be compatible

with more than one OS then the rate of failures and maintenance would increase and

therefore the system could potentially be interrupted more than necessary. The ambition of

Musync is to provide the optimal user experience and satisfaction, thus a reliable system has

the utmost priority.

1.2 Interface documentation guidelines

In this report; all classes, attributes and methods are named in the camel case format. Class

names start with a capital letter, while others start with lowercase. Class interface

descriptions are given in the following format:

Musync 4

class ClassName

Explanation of the class

Attributes

typeOfAttribute nameOfAttribute

Methods

returnType methodName(parameters)

Method explanation if necessary

1.3 Engineering standards

We have used the UML guidelines in this report for the class interfaces, diagrams,

scenarios, subsystem compositions [1]. UML is a commonly used way to generate these

diagrams, easy to use and since it is the method taught at Bilkent University, we chose to

utilize it in the following pages. The report follows IEEE’s standards for the citations [2].

Once again, this is a commonly used method and it is the preferred one in Bilkent University.

1.4 Definitions, acronyms, and abbreviations

API: Application Programming Interface.

MVC: Model View Controller architecture.

UI: User Interface.

Musync 5

2. Packages

2.1 Server

2.1.1 Model

Figure 1: Model package

User: This class is the base class of all user types. It has the basic attributes such as

password, id, location, last login date informations. Moreover, User has the points attribute in

order to enable the visitor to bid on music. User has visited places and requested songs

attributes in order to keep track of the visitor activity and increase points if the visitor is a

regular visitor of the place. Aforementioned attributes serve as necessary data to make

place recommendations to the user.

RegisteredUser: This class inherits User class. Users that registered through either email or

Spotify will be a registered user. Registered users will be able to create and control places.

Musync 6

To allow this functionality, RegisteredUser stores user information such as email and Spotify

auth token, and place related information such as owned places and premium account

information.

Place: This class represents places. A place in the context of this report is a point on earth

that has a shared list of songs that people can participate in controlling if they are in required

proximity of the point. Musync allows both commercial place owners and individual users to

create such a place and share their list. A Place needs a name, a location represented by

Location class and a shared playlist represented by Playlist class. This class also stores

other data like pin to connect, votes for songs, records of previously played songs to provide

functionalities Musync offers.

PermanentPlace: This class inherits the Place class. Owners of commercial places can

create permanent places that can provide service continuingly. Also a permanent place can

have a list of allowed music genres to both guide customers on what to expect and restrict

the type of music requested by customers.

VisitedPlace: This class represents a record of a user visiting a place. It stores the place,

the user and the date of visit to provide users with data like their previous visits.

Song: This class represents the songs as an entity in the entire system. It has the basic

attributes (duration, genre, name, etc.) and the functionalities to make the system work and

play music. Whenever a song is searched, added or requested to the system an instance of

this class will be created.

RequestedSong: This class is basically a different representation of a Song instance such

that it has a date, a place and user associated with it. It is the most essential entity of the

system. Whenever a user requests a song, an instance of this class is initiated and assigned

to a playlist. Later, users can bid on requested songs to play them as next Song which is

SongRecord class.

SongRecord: This class represents songs that are played in a place. An instance of this

class is initiated whenever a novel song is played in the playlist of a place. This class keeps

track of the statistical information about songs so that when a user views a place they can

see the genres of songs played in a place and trending songs.

SpotifyItem: This class stores data corresponding to Spotify counterparts of items like

songs and playlists.

Musync 7

SpotifyConnection: This class stores Spotify connection related data.

Playlist: This class represents Spotify playlist of the Place. Requested songs will be added

to the instance of this class and next songs will be selected from those songs.

Genre: This class represents genre of music and will be compatible with genres on Spotify

(e.g. Metal, Rock). This class is used to determine genres of Songs and Places.

Location: This class represents physical location of Places and Users. This class will be

used to determine in which Place, Users are. Also, this class will be compatible with Google

Maps as we will be using it as main location data source.

2.1.2 Controller

Figure 2: Controller package

MainController : This class is responsible for managing the input received from the user

and collect necessary information to be displayed to user. This class utilizes other controller

classes in order to convey the user information about places, playlist, songs and their

Musync 8

account. This class is the essential element of the system in order to maintain information

flow between user and system.

UserController: This controller class is responsible for doing user specific operations like

register and login.

PlaceController: This class is responsible for creating a new place and joining user to a

place.

SpotifyController: This controller class is responsible for providing functionalities to

communicate with Spotify.

LocationController: This class will be communicating with Google Maps API to determine

locations of Users and Places and handling location related issues.

Musync 9

2.2 Client

2.2.1 View

Figure 3: View package

UserProfileView: This view class will show details of the User and will be common for all

kinds of users. However, details will be shown differently for different kinds of users. For

instance, RegisteredUsers will be able to see and modify their email, password and Spotify

information.

UserSettingsView: This view class will show details of User information and let them

change their information such as password or Spotify account.

Place: This class will show the general information about a place such as the location so

that users can see whether that place is nearby. Moreover, users will be able to see if the

place has more than one branch by viewing their owner.

Musync 10

PlaceProfileView: This class will represent detailed information about a place so that a user

can have an overall idea about the music taste of that place. Users are able to view the

trending songs and general music genres of the place.

PlaceMusicFlowView: This view class will show user the music flow of the place he/she

joined. It will display the currently playing song, the songs that are being voted to play next,

their votes and ending time of the voting.

PlaylistView: This view class will display the current playlist of the place.

SongSearchView: This view class will be used for displaying the results of song search.

PlaceSearchView: This view class will be used for displaying the results of place search.

Musync 11

3. Class Interfaces

3.1 Server

3.1.1 Model

class User

This class is the base class of all user types. It has the basic attributes such as password,

id, location, last login date informations. Moreover, User has the points attribute in order to

enable the visitor to bid on music. User has visited places and requested songs attributes

in order to keep track of the visitor activity and increase points if the visitor is a regular

visitor of the place. Aforementioned attributes serve as necessary data to make place

recommendations to the user.

Attributes

private int id

private String name

private Date lastLogin

private int points

private Location location

private List<VisitedPlace> visitedPlaces

private List<RequestedSong> requestedSongs

Methods

Getter and setter methods.

Musync 12

class RegisteredUser

This class inherits User class. Users that registered through either email or Spotify will be

a registered user. Registered users will be able to create and control places. To allow this

functionality, RegisteredUser stores user information such as email and Spotify auth

token, and place related information such as owned places and premium account

information.

Attributes

private SpotifyConnection spotifyConnection

private String email

private String password

private Date premiumEnd

private List<Place> places

private int premiumTier

Methods

Getter and setter methods.

class Place

Stores data related to places with shared lists.

Attributes

private int id

private String name

private SpotifyConnection spotifyConnection

private int pin

Musync 13

private Song[] votedSongs

private int[] votes

private Location location

private Playlist playlist

private SongRecord[] songRecords

Methods

Getter and setter methods

public void voteSong(int songIndex, int vote)

public void refreshVotedSongs()

public void refreshPin()

class PermanentPlace extends Place

Places that are permanent, like restaurants.

Attributes

private Genre[] genres

Methods

Getter and setter methods

class VisitedPlace

Stores record of a user visiting a place at a date.

Attributes

private DateTime date

Musync 14

private User user

private PermanentPlace place

Methods

Getter and setter methods

class Song

Stores data related to songs.

Attributes

private String name

private int duration

private List<Genre> genres

private SpotifyItem spotifySong

Methods

Getter and setter methods

class RequestedSong

Stores data related to requested songs.

Attributes

private Song song

private User requester

private Date date

private PermanentPlace place

Musync 15

Methods

Getter and setter methods

class SongRecord

Stores data related to played songs.

Attributes

private Song song

private int listenCount

Methods

Getter and setter methods

class SpotifyItem

This class stores data corresponding to Spotify counterparts of items like songs and

playlists.

Attributes

private String id

private String uri

private String name

private String description

Methods

Getter and setter methods

Musync 16

class SpotifyConnection

This class stores Spotify connection related data.

Attributes

private String accessToken

private String refreshToken

private int expiressIn

Methods

Getter and setter methods

class Playlist

This class represents Spotify playlist of the Place. Requested songs will be added to the

instance of this class and next songs will be selected from those songs.

Attributes

private int id

private Map<Integer, Song> songs

private int currentSong

private Time currentSongStartTime

private SpotifyItem spotifyPlaylist

Methods

public List <Song> getNextSongsForBidding()

public void changeCurrentSong(Song nextSong)

public void addSong(Song songToAdd)

Musync 17

class Genre

This class represents genre of music and will be compatible with genres on Spotify (e.g.

Metal, Rock). This class is used to determine genres of Songs and Places.

Attributes

private int id

private String name

Methods

Get methods for attributes

class Location

This class represents physical location of Places and Users. This class will be used to

determine in which Place, Users are. Also, this class will be compatible with Google Maps

as we will be using it as main location data source.

Attributes

private int id

private double latitude

private double longtitude

private String district

private String city

private String country

Methods

Get methods for attributes

Musync 18

class PlackbackInfo

Stores playback information of currently connected user.

Attributes

private boolean isPlaying

private int timestamp

private int progress

private Song song

Methods

Getter and setter methods

3.1.2 Controller

class MainController

Stores playback information of currently connected user.

Attributes

private UserController userController

private PlaceController placeController

private SpotifyController spotifyController

private Song[] songs

private Genre[] genreList

Methods

Getter and setter methods

Musync 19

class UserController

This controller class is responsible for doing user specific operations like register and

login.

Attributes

private List<User> users

private List<RegisteredUser> registeredUsers

Methods

public User createUser(struct UserInfo)

public String loginUser(String email, String password)

class PlaceController

This class is responsible for creating a new place and joining user to a place.

Attributes

private List<Place> places

Methods

public Place createPlace(struct PlaceInfo)

Registers a new place in the system.

public boolean validatePlace(struct PlaceInfo)

Checks the validity of the place user trying to join.

class SpotifyController

This class provides functionalities to communicate with Spotify Web API.

Attributes

Musync 20

private String clientId

private SpotifyConnection spotifyConnection

private String userId

private Playlist playlist

Methods

Getter and setter methods

public Playlist createPlaylist(string name, string description)

public void addSongToPlaylist(Song song, int position)

public void removeSongFromPlaylist(int position)

public void moveRangeInPlaylist(int start, int length, int insertBefore)

public PlaybackInfo getPlaybackInfo()

public void startPlayback()

class LocationController

This class will be communicating with Google Maps API to determine locations of Users

and Places and handling location related issues.

Attributes

private List<Location> locations

Methods

public Location determineLocation()

public List<Place> findNearbyPlaces(Location location, List<Place> places)

Musync 21

3.2 Client

3.2.1 View

class UserProfileView

This view class will show details of the User and will be common for all kinds of users.

However, details will be shown differently for different kinds of users. For instance,

RegisteredUsers will be able to see and modify their email, password and Spotify

information.

Attributes

private int id

private DateTime premiumStartDate

private DateTime premiumEndDate

private Map<Place, Integer> visitHistory

private Map<Song, Place> requestHistory

private List<Place> recommendedPlaces

Methods

private void goToUserSettingsView()

class UserSettingsView

This view class will show details of User information and let them change their information

such as password or Spotify account.

Attributes

private int id

private String spotifyId

Musync 22

private String email

private DateTime premiumStartDate

private DateTime premiumEndDate

Methods

private void changeEmail()

private void changeSpotifyAccount()

private void removeSpotifyAccount()

private void subscribeToPremium()

class PlaceMusicFlowView

This view class will show user the music flow of the place he/she joined. It will display the

currently playing song, the songs that are being voted to play next, their votes and ending

time of the voting.

Attributes

private String currentlyPlaying

private String[] nextSongs

private int[] nextSongVotes

private int voteEndingTime

class PlaylistView

This view class will display the current playlist of the place.

Attributes

Musync 23

private int playlistId

private List<Song> songs

private int currentSongNumber

class SongSearchView

Stores search term and the results of song search.

Attributes

private String searchTerm

private SpotifyItem[] results

class PlaceSearchView

Stores search term and the results of place search.

Attributes

private String searchTerm

private String[] results

private int[] resultIds

class Place

This class will show the general information about a place such as the location so that

users can see whether that place is nearby. Moreover, users will be able to see if the

place has more than one branch by viewing their owner.

Musync 24

Attributes

private int placeId

private int spotifyId

private String name

private String address

private double[] coordinates

private boolean isUserOwner

class PlaceProfileView

This class will represent detailed information about a place so that a user can have an

overall idea about the music taste of that place. Users are able to view the trending songs

and general music genres of the place.

Attributes

private Place place

private String[] preferredGenres

private String[] popularSongs

Musync 25

4. References
[1] IBM, "UML - Basics," June 2003. [Online]. Available:

http://www.ibm.com/developerworks/rational/library/769.html. [Accessed 17-Feb-2019].

[2] IEEE, "IEEE Citation Reference," September 2009. [Online]. Available:

https://m.ieee.org/documents/ieeecitationref.pdf. [Accessed 17-Feb-2019].

Musync 26

